Towards generalization of SEA to hyperelliptic curves

Nikita Kolesnikov

PhD Student Immanuel Kant Baltic Federal University

ECC 2019, rump session

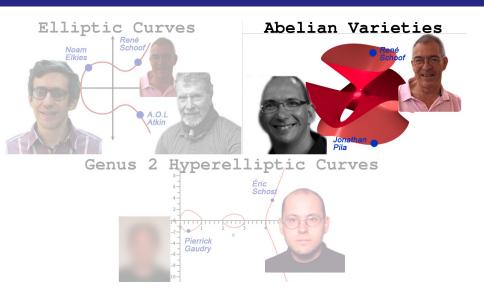
December 02, 2019

Nikita Kolesnikov

IKBFU

Genus 2 Hyperelliptic Curves

Nikita Kolesnikov



Nikita Kolesnikov

Let *A* be an abelian surface over \mathbb{F}_q , $char(\mathbb{F}_q) = p$

- $\blacktriangleright A \sim E_1 \times E_2 \text{ or } A \sim J_C$
- Fix some ℓ prime and consider ℓ -torsion subgroup $A[\ell]$
- Calculate the order $ord(Frob_{A[\ell]})$ of Frobenius action on A[I].

How to calculate this?

Nikita Kolesnikov

- ▶ Let *A* be an abelian surface over \mathbb{F}_q , $char(\mathbb{F}_q) = p$
- $A \sim E_1 \times E_2$ or $A \sim J_C$
- Fix some ℓ prime and consider ℓ -torsion subgroup $A[\ell]$
- Calculate the order $ord(Frob_{A[\ell]})$ of Frobenius action on A[I].

How to calculate this?

Nikita Kolesnikov

- Let *A* be an abelian surface over \mathbb{F}_q , $char(\mathbb{F}_q) = p$
- $A \sim E_1 \times E_2$ or $A \sim J_C$
- Fix some ℓ prime and consider ℓ -torsion subgroup $A[\ell]$
- Calculate the order ord(*Frob*_{A[l]}) of Frobenius action on A[l].

Nikita Kolesnikov

▶ Let *A* be an abelian surface over \mathbb{F}_q , $char(\mathbb{F}_q) = p$

• $A \sim E_1 \times E_2$ or $A \sim J_C$

- Fix some ℓ prime and consider ℓ -torsion subgroup $A[\ell]$
- Calculate the order ord(*Frob*_{A[l]}) of Frobenius action on A[l].

How to calculate this?

Nikita Kolesnikov

Orders of matrices in $Sp_4(\mathbb{F}_\ell)$

Classes in $Sp_4(\mathbb{F}_\ell)$	Order of matrices (projective)	Probability $(M \in Sp_4(\mathbb{F}_\ell) \land M \in class)$
$\overline{A_1}, \overline{A_1'}$	1	$1/(\ell^4(\ell^2-1)(\ell^4-1))$
$\overline{B_1(i)}$	$\frac{\ell^2+1}{2s}, s = \gcd(i, \frac{\ell^2+1}{2})$	$1/(\ell^2 + 1)$
$\overline{B_2(i)}$	$\frac{\ell^2 - 1}{2s}, s = \gcd(i, \frac{\ell^2 - 1}{2})$	$1/(\ell^2 - 1)$
$\overline{B_3(i,j)}$	$\frac{\ell-1}{\gcd(\ell-1,i+j, i-j)}$	$1/(\ell - 1)^2$
$\overline{B_4(i,j)}$	$\frac{\ell+1}{\gcd(\ell+1,i+j, i-j)}$	$1/(\ell + 1)^2$
$\overline{B_5(i,j)}$	$\frac{\ell^2 - 1}{\gcd(\ell^2 - 1, i(\ell - 1) + j(\ell + 1), 2i(\ell - 1))}$	$1/(\ell^2 - 1)$
$\overline{B_6(i)}$	$\frac{\ell+1}{2s}, s = \gcd(i, \frac{\ell+1}{2})$	$1/(\ell(\ell+1)(\ell^2-1))$
$\overline{B_7(i)}$	$\frac{\ell(\ell+1)}{2s}, s = \gcd(i, \frac{\ell(\ell+1)}{2})$	$1/(\ell(\ell+1))$
$\overline{B_8(i)}$	$\tfrac{\ell-1}{2s}, s = \gcd(i, \tfrac{\ell-1}{2})$	$1/(\ell(\ell-1)(\ell^2-1))$

The distribution of orders

ord	(1, <i>ℓ</i>]	$(\ell, 2\ell]$	$\frac{\ell^2-1}{2}$	$\frac{\ell^2+1}{2}$	$\frac{\ell^2-1}{4}$	$\frac{\ell^2+1}{4}$	Other
Prob	0.193	0.065	0.134	0.157	0.066	0.050	0.335

Nikita Kolesnikov

Result:

• the orders $ord(Frob_{A[\ell]})$ are sorted by probabilities.

Further work:

 Apply the distribution of orders to point counting algorithm.

• Any insight in this direction will be appreciated.

https://crypto-kantiana.com/nikita.kolesnikov/ NiKolesnikov@kantiana.ru

Thank you!

Nikita Kolesnikov